

Abstract— As productive systems are becoming more complex,

their control solutions are also increasingly becoming more complex.
The processes of understanding and developing such systems have
also become highly complex. Thus design flaws are intrinsic to their
development. Even the most innovative systems are error prone and
faults or accidents may cause severe damage to the operators, the
plant or the environment, as no system has no fault risk. The concepts
of Safety Instrumented Systems (SIS) might be a solution to this
problem. However, critical systems – such as oil and gas refineries
where faults may cause severe accidents – controlled by PLCs also
demand a formal verification processes of their control programs and
must be developed according to the safety control program
development cycle defined on the IEC 61511 standard. On this work
we propose a framework for the model based development of SIS
control programs that is based on the cycle defined on the IEC 61511
standard and where the interaction between the prevention and
mitigation programs is considered. The framework was applied to
the development of the SIS control program of a natural gas
compression plant (ECOMP). The framework allowed the resulting
program to present a modular structure and to have several properties
properly verified – considering that the final model represented the
entire SIS program of a real world plant.

Keywords— framework, IEC 61511, prevention and mitigation

SIS, Model Checking, GHENeSys.

I. INTRODUCTION
A
s per society demand, increasingly complex control systems

are being developed for a great variety of applications, ranging
from productive to service systems [1] [2]. Together with the
physical complexity of these control systems, their control
programs also became more complex, not only because some
tasks, which were performed by hardware, are now performed
by software, but also because software allows the

The authors would like to thank the Brazilian governmental agencies

CNPq, FAPESP, and CAPES for their financial support to this work.
Authors with Polytechnic School – Department of Mechatronics

Engineering and Mechanical Systems, University of São Paulo - São Paulo,
Brazil. (+55 11 30916025; e-mail: rferrarezi@usp.br,
reinaldo.squillante@usp.br, jeferson.souza@usp.br, reinaldo@usp.br,
fabri@usp.br, pemiyagi@usp.br, lamoscat@usp.br, jokamoto@usp.br,
diolinos@usp.br).

implementation of much more complex tasks [3].
Even the most innovative systems are error prone and faults

or accidents may cause severe damage to the operators, the
plant or the environment. Although fault detection and
treatment is subject of several studies, faults still happen as (i)
no physical component or device has no fault risk, (ii) human
operators does not have no risk, (iii) no tool can predict or
model all states reachable by a system [4], [5], [6]. The
concepts of Safety Instrumented Systems (SIS) might be a
solution to these problems. Risk reduction layers based on
hierarchical control solutions can manage risks through
prevention and mitigation layers designed to lead the system
to a safe state in case of faults [7]. On this context, safety
standards as the IEC 61508 [8] and IEC 61511 [9], provide
guidelines for the SIS life cycle, ranging from development to
decommissioning.

The processes of understanding, specifying and developing
such complex and critical systems has become a highly
complex task, thus design flaws are intrinsic to their
development [10], [3]. Critical processes controlled by PLCs
– such as oil and gas refineries, where faults may cause severe
accidents – requires great reliability from their control
programs and thus, they not only need to be subject of formal
verification processes [11], [12], but also have to be developed
according to the safety control program development cycle
defined on the IEC 61511 standard [13].

We found distinct approaches to deal with these problems
on the literature. Approaches as presented in [14] and [15]
propose frameworks for safety control software development
as well as the control software architecture, however they do
not include formal verification phases or were proposed
according to the IEC 61511 standard. It is worth mentioning
that the framework proposed in [15] presents modularity
concepts and is one of the few that distinguish between
prevention and mitigation control programs. Approaches as
the ones presented in [16] and [17] only focus on proposing
methodologies for the formal verification of exiting control
programs. In [18] is presented a proprietary approach for the
model based development of safety control programs
according to the IEC 61508 standard, no details are given on
how each phase of the cycle is implemented. In general terms,

A Framework for Modeling and Formal
Verification of SIS Control Programs Based on

the IEC61511 Standard
Rodrigo Cesar Ferrarezi, Reinaldo Squillante Júnior, Jefferson A. L. Souza, José Reinaldo Silva,

Fabrício Junqueira, Paulo Eigi Miyagi, Lucas Antonio Moscato, Jun Okamoto, Jr., Diolino J. Santos
Filho

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 283

mailto:rferrarezi@usp.br
mailto:reinaldo.squillante@usp.br
mailto:jeferson.souza@usp.br
mailto:reinaldo@usp.br
mailto:fabri@usp.br
mailto:pemiyagi@usp.br
mailto:lamoscat@usp.br
mailto:jokamoto@usp.br
mailto:diolinos@usp.br

the safety control software is modelled as blocks diagrams and
state machines and automatically translated to control code.
The control code is then verified through observers, where
only if a given input produces the expected output is verified.
In [19] a process is presented for the model based
development of control programs and their formal verification
from their informal specifications. It is also discussed the
necessity of including the plant behavior model on the control
model for proper verification. However this approach was not
proposed for safety programs and does not present solutions to
minimize the state space explosion problem.

On this work we propose a framework for the development
of SIS control programs. The proposed framework: First, will
be based on the phases of the safety control program
development cycle of the IEC 61508 and IEC 61511
standards. Second, will take into consideration and analyze the
relationships between the prevention and mitigation layers.
Third, will be based on the Model Based Design (MbD) [3]
approach. Considering the approaches on the literature, with
this work it is expected to put together the best practices for
the development of safety control programs based on the cycle
of the IEC 61508 and IEC 61511 standards, as well as to deal
and propose solutions for the shortcomings arriving in a
framework that can be used for control engineers to develop
solutions for real world problems.

This work is organized as follows: Section II will present a
short review of the main concepts used in this work. Section
III will present a description of the proposed framework.
Section IV will present an application of the framework to a
real case scenario. Section V will present the results and
conclusions.

II. MATERIALS AND METHODS

A. The GHENeSys environment
SIS control systems can be viewed as an event driven

system, presenting functional characteristics as asynchronism,
reset possibility, parallelism, concurrence, etc. Thus they can
be classified as discrete event systems (DES) and modelled by
Petri Nets, [5], [20] and its extensions.

The GHENeSys environment is being developed with the
goal of representing, in a unified way, classical Petri Nets, its
extensions defined on the ISO/IEC 15909 standard, and High
Level Petri Nets [21]. The GHENeSys environment is
composed of the following basic modules: The GHENeSys
nets and the Editor tool, the simulation module and the
verification tool [22].

The GHENeSys environment implements several concepts
to aid the modeling process, such as: Pseudoboxes that allow
easier modelling of the exchange of information between
different parts of the system; Hierarchy that allows the
encapsulation of subnets without losing any properties through
the use of macro elements; The representation of non-
deterministic time periods, where lower and higher bound time
intervals can be set for transitions and places.

The GHENeSys net is the tuple ,
where:

 is the set of places, which can be boxes
or pseudoboxes;

 are the activities, or active elements;
 is the flux

relation;
 is the capacity function;
 is the function that identify the

macro elements or the hierarchy;
 is the set of

initial marks;
 is the function that

maps the dense time intervals for each element.
The set of markings is the pair with , defining

the place each token can be found and defining for how
long this token will remain in the place. The time
measurement is globally synced and updated after each
transition.

The GHENeSys verification tool performs the formal
verification of real time concurrent systems modelled by
GHENeSys net through Model Checking [23] techniques. The
state space is constructed using the enumerative approach
based on state classes [24] concept. The tool has options to
build SCG, SSCG and CSCG state graph types. Checked
properties are specified through TCTL [25].

The GHENeSys environment will be used on this work due
to several reasons: (i) Due to the characteristics of the SIS, the
amount of checked properties may be very large, so it is
desirable that the state space is generated through the
enumerative approach once instead of being generated on-the-
fly several times. The state space generation is done in
exponential space and time, and the verification of a property
is performed in polynomial time, if the state space is already
constructed. (ii) The use of the dense time approach, as
several SIS properties are time dependent. (iii) PNML [26] is
the default transfer format. This allows the interchange of
information between all GHENeSys tools, as well as with
external tools that support the standardized format. (iv) All
modeling and verification tasks are performed with no need of
external modules or tools. (v) The state space generation and
the specification of the tested properties are performed by the
same tool.

III. PROPOSED FRAMEWORK
The proposed framework will be presented according to the

“V-model” from the IEC 61511 standard [9]. The main
components of the framework and their relations with the
phases of the “V-model” are displayed on Fig. 1. Each
framework component was proposed to comply with one or
more phases of the safety program development cycle.

The first phase of the development cycle is related with
each SIS subsystem requirement elicitation. This phase is out
of the scope of the framework and must be addressed by the
SIS control program development methodologies, which will
be discussed later.

The methods, techniques and tools that will be used during

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 284

the control program development must be chosen on the first
part of the second phase. As already discussed on previous
sections, the GHENeSys environment was chosen for the
modelling and formal verification of SIS control programs.

Fig. 1 - Framework + "V-model"

The control program development on the framework will be
performed according to the Model Based Design (MbD)
approach [3]. Although this approach is not referred in the IEC
61511 standard, as according to it, all control programs shall
be developed in an implementation language. The standard
requires that a final validation must be performed by the end
of the development cycle, and modeling is one of the
recommended tools for this validation. Thus by adopting the
MbD, the framework will be not only complying with the
standard but also improving the modularity of the SIS control
programs.

A. Control program architecture modelling methodology
Besides the modeling tools, a modeling methodology also

must be chosen or proposed. This methodology must comply
with the modularity requirements of the IEC 61511 standard
and allow a high-level view of the modeled system together
with the necessary refinements.

There are several methodologies on the literature for the
modelling and development of control programs as in [27],
[28] and [29] among others. However these methodologies
were developed for productive / manufacture systems and are
not suitable for SIS development. As opposed to a usual
productive system, a SIS is designed to oversee a system and
to react on events received at any point of the control code
execution, degenerating the system to a safe state. Also,
control programs for productive systems usually present a
“linear” structure, that is, the system receives some input – or
raw material –, this material is then processed or transformed
resulting on an output – or product – by the end of the
program execution. SIS control programs are not designed to
produce outputs in this sense, but to decide which control
actions are necessary based on the current state of the
overseen system. As a productive system process goods, a
SIS process information.

Based on the discussed distinctions between a productive
system and SIS we are proposing a methodology for SIS

control program architecture modelling in GHENeSys nets:
i. Main activity definition: The highest level activity is

defined.
ii. Definition of the independent macro processes: On

this step the main SIS processes must be defined.
A SIS might be composed of processes of fault
prevention and mitigation for example. Also a
coordination process might be proposed to
coordinate other processes.

iii. Sub-processes or functionalities definition: The
processes must be refined on the necessary
functionalities. For instance, a process of fault
prevention might need at least the fault detection
and actuation functionalities.

iv. Basic operations definition: The functionalities are
further refined in the necessary basic operations.
For instance, detection functionality might require
Boolean logic operations for fault detection, filters
for spurious readings from the sensors, among
others. Basic operations can be shared between
functionalities.

v. Basic operation refinement: All operations must be
refined according to the rules for Petri Net
reduction or refinement presented in [30] in order
to execute the logic they were designed to. A
GHENeSys net box must be defined as the holder
of the binary result of the modelled logic.

vi. External signals representation: All necessary external
signals for the execution of each operation must be
represented. External signals can be sensors,
actuators or even other operation output signals.

By using the presented methodology we expect to generate
the maximum possible amount of generic operations, being the
control program designer responsible to choose the operations
necessary for the developed system. New functionalities can
also be developed if needed.

B. Control program architecture
The second, and final, part of the second phase of the

development cycle regards the control program architecture.
The architecture is developed according to the methodology
introduced on the last section.

i. Main activity definition: The main, and highest level,
activity is the whole SIS control program.

ii. Definition of the independent macro processes: After
refining the SIS activity we have the prevention
and mitigation macro processes.

iii. Sub-processes or functionalities definition: Both
prevention and mitigation activities need at least
the fault detection and fault treatment
functionalities.

iv. Basic operations definition: On this step we hope to
refine the most common basic operations needed
for SIS development found in several related
works as [5] e [31].

v. The detection functionality is refined in four
operations. The spurious event filter operation

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 285

avoids spurious readings from poorly calibrated
sensors, for instance, thus avoiding unwanted SIS
activation and system degeneration. The Boolean
logic “AND” and “OR” operations can be used to
implement logics for faults detection between
several sensors. The voting logic operation is using
to implement voting logics – like 2oo3 (two out of
three, 1oo3 (one out of three) and so on. As these
logics are very common in SIS development they
will be implemented as a full operation even
though they can be implemented through Boolean
operations.

vi. The treatment functionality is also refined in four
operations. The Boolean logic operations are the
same of detection. The sequencing operation
provides sequencing for actuator signals. The
actuation operation sends signals for the actuators
and receives signals from detection operations and
command devices – if used.

vii. Basic operation refinement: The operations described
on the last item are now further refined in order to
obtain the structures that can implement the
proposed logic in GHENeSys nets. The
refinements of a 2oo3 voting operation are shown
on Fig. 2. The “Voting-ON” box stores the
information if the voting operation is true or not
based on the signal from the sensors. The
refinements were done for all other operations.

viii. External signals representation: Now the sensors
signals can be represented on the operations
structures to enable the desired logics. The
complete 2oo3 voting logic is shown on Fig. 3.
This operation receives three input signals –
represented as the pseudo-boxes “ps-Sensor-
A/B/C” – that, if active in pairs, make the “Voting-
ON” box receive one mark. The box loses its mark
if any pair is no longer active. Input signals can
come either from sensors or any other detection
operation.

C. Control program development
The third and fourth phases of the development cycle are

related to the development of the control program. The
framework allows the user to choose the methodologies for the
development of the prevention and mitigation functionalities.
These methodologies must be based on formal models and be
in accordance with the IEC 61508 and IEC 61511 standards.
The methodologies must supply the necessary information to
build the control programs from the basic framework
operations.

1) Prevention Macro Process Development Methodology
The prevention macro process development methodology is

responsible to identify and select the faults that will be treated
by the SIS. Faults can be identified through HAZOP reports,
cause-effect matrix or other applicable technique. The
methodology must then apply the techniques to discover the
causal relations leading to each selected fault, that is, how – by

which sensors – each fault can be detected.

Fig. 2 - Voting operation structural refinement

Besides proposing how each fault can be detected, the

methodology must also propose actions to treat each fault.
The treatment is usually performed by the actuation of one or
more components – as control valves – and/or the shutdown of
an endangered plant equipment. The command signals, if any,
must be defined and the preset times used on the spurious
event filter block must be informed in case this block is
implemented. All collected fault information constitutes a SIF.

From SIF information, the necessary basic operations to
model the prevention macro process can be selected.
Operations have their input and output signals connected until
the control program model is constructed.

Fig. 3 - 2oo3 Voting operation

2) Mitigation Macro Process Development Methodology
Now, a mitigation macro process development methodology

must be chosen, either the same methodology used for
prevention or a new methodology can be chosen. As opposite
to the prevention activity, the mitigation activity does not need
to select the faults that will be treated by the mitigation SIS.
The mitigation SIS will treat faults on the prevention SIS
execution, that is, the mitigation SIS will mitigate the effects
of the prevention SIS not being able to lead the plant or
process to a safe state.

The mitigation methodology, as the prevention
methodology, supplies the necessary information to constitute
the SIF, that is, how each effect can be detected and treated.
Necessary command signals and preset times must also be

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 286

provided by the methodology. From SIF information the
necessary basic operations to model the mitigation macro
process are selected. Operations have their input and output
signals connected until the control program model is
constructed.

D. Verification Process
The sixth and seventh phases of the development cycle are

related to the formal verification of the models. Due to the
Model based Design approach, the formal verification is
performed on the control program models, not on the control
code. The fifth phase of the development cycle (control code
generation) will be performed on the models after the
verification processes. All properties described initially in
natural language shall be translated to TCTL according to the
patterns presented in [32]. Models are integrated according to
methodology described below. The verification will be
performed in three different contexts which are detailed
afterwards.

1) Integration of the models
The verified models must be integrated after each

verification context. First, the prevention and mitigation
models are integrated resulting on the complete treatment
model of a single fault. The treatment of several faults is then
integrated, resulting on the complete SIS model. The
integration is performed according to the steps below:

i. Shared sensors and actuators between models are listed.
ii. Shared sensors signals are duplicated. Each model keeps

its basic operations, like spurious events filters,
voting, etc. Only the sensor signal is duplicated.

iii. The activation of sets of shared actuators is implemented
through “OR” logic operations between the
pertinent actuation operations. Sequencing between
actuators must be respected and implemented
through sequencing operations.

2) Models context
The first verification is performed in each prevention and

mitigation model. This first context verifies if the models are
capable of identifying and treating the fault they were
designed to identify. The verified properties can be extracted
from each SIF description. The reachability of undesired states
must also be verified, that is, the reachability of states that
might endanger the protected system or process must be
verified. Natural language properties are translated to TCTL
propositions and inputted on the GHENeSys verification tool.

3) Fault treatment context
The verified and corrected, if necessary, prevention and

mitigation models are now integrated and their relationship is
evaluated. The second context verifies if the integrated
models can properly work together, that is, if the prevention
model can jeopardize the mitigation model and vice-versa.
Verified properties can be proposed from the analysis of the
integrated GHENeSys model structure.

4) SIS context
The last verification step is performed on the complete SIS

model, where the treatment of several faults is integrated. As
the on the fault treatment context, the SIS context verifies if
the integrated models can properly work together, that is, if
the treatment of one fault can jeopardize the treatment of
others faults. From the analysis of the integrated GHENeSys
model structure the verified properties can be proposed.
Desirable events such as, shared actuators being activated by
all pertinent models and sequencing operations, must be
verified. Undesirable events, such as one model being able to
activate actuators that are not part of treatment of the fault,
must also be verified.

5) Strategies to deal with the state space problem
The basic architecture of a discrete event system (DES) is

composed of command and sensoring devices that send
environmental information to the control module. The control
module processes the information according to its control
software logics and sends information to the output devices,
such as monitoring and actuation devices. As a SIS can be
classified as a DES, they share the same architecture.

However, although sharing the same basic architecture, they
have distinct verification contexts. The verification of the
control software for SED – such as manufacture systems – is
aimed in checking if the control software fulfills its design
requirements, that is, if the software has the desired behavior
based on a fixed set of inputs (or initial states). The
verification of SIS control software is aimed not only on
verifying if the software fulfills a set of requirements, but also
if the system does not reach undesirable states that might be
dangerous. Thus the model of the plant must be attached to
the SIS control program model to generate all possible sets of
inputs.

As modelling the behavior of a plant is out of the scope of
this work, a very simple model for the plant was chosen, on
this model every input device is modelled with two states –
GHENeSys boxes –, one is marked when the signal is active,
and the other is marked when the signal is inactive. Although
this model does not represent precisely the behavior of the
plant, it can generate all possible sets of inputs.

The main downside of this approach is the explosion of the
state space, thus we proposed some strategies to deal with this
problem and shorten verification duration.

i. Actuators models suppression
On SIS, usually a single actuation signal activates several

actuators, so the nets representing the actuators behavior can
be suppressed, as only the actuation signal needs to be part of
the verification. Thus, the size of the state space can be
reduced without losing any important information regarding
the behavior of the system.

ii. Segregation of the models
Another strategy to reduce the state space explosion

problem is the segregation of the models. This segregation
can be performed on mitigation models, as the mitigation
model of one fault is composed of the treatment of several
effects. A usual mitigation model constructed according to this
framework has the structure shown on Fig. 4. On the figure,
the effect “A” is detected by the sensors “A”, the signal of the
sensors is sent to the detection logic “A” and the logic

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 287

activates the actuation operation “A”. This operation finally
activates the actuators “A/B/C”, which are shared among all
effects. The same happens for the effect “B”, except that the
actuators “A/B/C” and “B/C” are activated. The effect “C”
activates the actuators “A/B/C”, “B/C” and “C”.

Fig. 4 - Mitigation program structure

We propose to perform on this type of model four distinct
verifications. On the first three verifications (Verification 1, 2
and 3) the model of each effect treatment is verified alone,
with other models disabled. These first three verifications are
intended to verify if the treatment of each effect has been
properly implemented. The last verification (Verification 4) is
intended to verify the interactions between the actuation of all
effects. That is, if each effect treatment model can only
activate its actuators or if some effect can jeopardize the
treatment of another. By verifying only the actuation relations,
the model does not need the detection blocks anymore – as
each model was already verified individually – leading to
smaller models and thus shorter verification durations.

iii. Segregation of the context
As the models are integrated for the verification of the next

context they inevitably get increasingly bigger. However, the
integrated models were already verified on the previous
context, so only their actuation interactions need to be
verified. Much like the “Verification 4” of the previous item,
the sensors and detection logic models can be removed from
the models, just by allowing the actuation operation to
generate random signals all possible combinations are inputed
on the actuation logic and their relation can be verified.

E. Control program codding
With the SIS control program properly verified it is possible

to start the fifth phase of the development cycle that is related
to the control program codding.

One of the advantages of using the model based approach is
the possibility of automatically transforming the models into a
language allowed by the IEC 61131-3 [33] standard. To
perform this isomorphic transformation we propose to use the

method described in [34]. This systematic generates modular
LD diagrams, where it is possible to recognize blocks
resulting from the transformation of transitions, places or
outputs. The systematic is composed of the following steps:

i. Assign LD internal variables to transitions.
ii. Assign LD internal variables to places.

iii. Internal LD events must be associated with output
signals as monitoring and actuation.

iv. External LD events must be associated with input
signals as command and sensoring.

v. For each transition generate the corresponding LD
a. One rung for each transition
b. Each rung must contain AND operations

between the transition preconditions and
restriction conditions (external events)

c. In case of timed transitions, TON elements
must be added before the relay that
represents a transition on its rung.

vi. For each local state change generate the corresponding
LD

a. First the initial marking is generated.
b. The marking of each place is updated by

set/reset relays
vii. Generate the LD for the external events

a. Output activation LD
Normal relays without memory must be used as the local

states remain active until some state transition happens.

F. Control program tests
The eighth phase of the development cycle is the integrated

test of the control program and the control hardware. On this
framework, the control program, now translated to an IEC
61131-3 standard language, is uploaded to the safety PLC and
submitted to exhaustive plant simulation tests. These tests
may be performed through HIL [35] techniques. This phase
shall be further developed on future works.

IV. FRAMEWORK APPLICATION
The proposed framework was applied to the development of

the SIS control program for a natural gas compression plant
(ECOMP). As this type of plant works with highly flammable
fluids, the process risk is too high, demanding the
implementation of SIS.

A. Process description
The ECOMP plant is connected to the main gas pipeline

through the suction pipeline. The incoming gas is filtered on
two coalescent filters then distributed between four turbo
compressors. The compressed gas then returns to the main gas
pipeline through the discharge lines. There are temperature
sensors, fire and gas detectors on each turbo compressor
discharge lines as well as pressure sensors on the main
discharge line. Several ON-OFF valves are installed on the
suction lines, between the filters, on the turbo compressors,
and on the discharge lines. Also there are ON-OFF valves for
the emergency discharge lines, and on the CO2 tanks
connected with the suction of each turbo compressor. All
equipment TAGs used are according to the SA-S5.1-1984 [36]

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 288

standard.

B. Development of the control program
Now that the process is described, the methodologies for the

development of the prevention and mitigation functionalities
must be chosen.

1) Development of the prevention macro process
The prevention macro process will be developed according

to the methodology proposed in [5]. Briefly, the faults that
will be treated by the prevention SIS are extracted from the
HAZOP report. The detection models are generated from
cause-effect matrixes, and then those matrixes are converted
into Bayesian Networks, which are finally converted into Petri
Nets. The treatment models, that is, the actuators used on the
treatment of each fault, are generated from the HAZOP report.

Applying the methodology for the ECOMP results in a table
where it is possible to find the faults that will be treated, their
SIF number, the initializing events – the sensors that are
capable of detecting such fault – and the prevention actions,
that is, which valves need to be closed and/or which
equipment must be shut-down, and so on. The logic relations
between the sensors and command signals can be found on the
generated Petri.

The first fault is “High pressure on the discharge lines”.
This fault can be detected by the sensors

 connected by a 2oo3
voting logic. The treatment is performed by closing six ON-
OFF valves and by shutting-down all four turbo compressors.
The second fault is “High temperature on the turbo
compressors discharge”. This fault can be detected by the
sensors connected by the
logic

.
The treatment is performed by shutting-down all four turbo
compressors. Also, a command signal resetting the models
was implemented.

Finally, both models will need the spurious event filter and
the actuation operations. The first fault treatment model will
need the 2oo3 voting operation, and the second fault treatment
model will need the “OR” logic operation. With the necessary
blocks, the high level GHENeSys model is assembled and
refined until the full model is obtained. Unfortunately the
models are too big to be presented on the paper.

2) Development of the mitigation macro process
The mitigation macro process will be developed according

to the methodology proposed in [37]. The mitigation treatment
is focused on the mitigation of the effects of the prevention
SIS failing to lead the plant to a safe state. The detection
models are generated from how to detect each effect described
on the FMEA [38] report. Relations between sensors are
described on the FTA [38] report. Treatment models are
constructed from What-if techniques [39].

The application methodology on the ECOMP results on
What-if, FMEA and FTA reports. From these reports it is
possible to obtain the sensors and actuators related with each
effect, as well as their logical relations. As example, fire may
be one of the effects of the first prevention fault not being

properly treated; as if the temperature is not lowered the
pressurized gas can leak and ignite. This effect can be
detected by the sensors

. The
treatment is performed by first, performing the actions from
the prevention SIS, second, opening the emergency discharge
line, third, closing the filters outlet vales and, after all these
actions are performed, finally opening the valves from the
CO2 tanks.

Finally, the example effect will need the spurious event
filter and “OR” logic operations for the detection
functionality. “AND” and “OR” logic, sequencing and the
actuation operations for the actuation functionality. Logic
operations are necessary in the actuation blocks as some
actuators are shared among treatment models and there are
sequencings that must be respected. With the necessary
blocks, the high level GHENeSys model is assembled and
refined until the full model is obtained.

C. Models verification
The strategies for the reduction of the state space problem

were applied to all models, integrated or not. The amount of
checked properties and the verification duration for each
model can be observed on the Table I.

Table I - Verifications

Model # of
properties

of State
classes

Time
elapsed

Fault 1 Prevention 3 2785 24s
Fault 4 Prevention 3 13566 9m 30s
Fault 1 Mitigation -

Effect 1 3 5061 3m 11s

Fault 1 Mitigation -
Effect 2 3 24827 1h 1m 24s

Fault 1 Mitigation -
Effect 3 3 38648 2h 28m 16s

Fault 1 Mitigation -
Interaction 2 178 1s

Fault 4 Mitigation -
Effect 1 3 24827 1h 14m 18s

Fault 4 Mitigation -
Effect 3 3 38648 2h 10m 6s

Fault 4 Mitigation -
Interaction 2 66 1s

Fault 1 integrated 4 2148 15s
Fault 4 integrated 4 885 3s

Complete SIS 4 109963 4h 17m 33s

All verifications were performed on an Intel Core i7 3770

(@3.4 GHz), 16GB DDR3 SDRAM, 1 TB HDD machine
running Windows 7 SP1 with Java Version 7 Update 67. Some
examples of checked properties are given on Table II, together
with their respective TCTL propositions. All formulas were
checked with satisfactory results.

Where “P” stands for prevention, “M” for mitigation, “E1”,
“E2”, “E3” stand for each effect treated by mitigation, and
“ENABLE_EXT” stands for the command signal. “PSHH-

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 289

006A/B/C” is the signals from the pressure sensors.
TABLE II. CHECKED PROPERTIES

Models level – Fault 1 prevention
Actuators remain activated and the compressors remain off
until the fault is not detected anymore by the sensors for 10
sec. and the command signal is active.

SIS level – Integrated

Common actuators are activated by all models.

The activation of any prevention model never triggers any
actuators exclusively related with the mitigation models.

V. CONCLUSION
On this work we presented a framework for the model

based development of SIS control programs according to the
phases provided by the safety software development cycle
from the IEC 61508 and 61511 safety standards. The
GHENeSys environment was chosen as the main tool to aid
the development; this choice was also justified as per safety
standard requirement. The modular development of the
control software was allowed by the proposed methodology
for the architecture development. This methodology not only
was used to propose the control program architecture
considering the most common SIS software components, but
also can be used by the control engineers to develop others
architectures fitting their specific needs and still respecting the
safety standards.

After the control program architecture was proposed, the
development of the control program was discussed.
Guidelines for the choice of the methodologies for the
development of the prevention and mitigation functionalities
were discussed, where these methodologies must supply the
information needed to assemble the modular operations that
will result on the final control program model.

The verification processes were broken into contexts and

guidelines to propose the checked properties in each context
were supplied. The modular approach allowed the easy
integration of the simpler models until the complete SIS model
is obtained. After extensive modeling and testing, some
strategies to deal with the state space explosion problem were
proposed. Also, a methodology for the isomorphic
transformation of the SIS control program model to control
code was discussed.

Finally, the framework was applied to the development of a
SIS control program for a real gas compression plant. The
framework was able to deal with all the specific needs of the
project, the generated models presented modular architecture
and, thanks to that, can be easily understood and maintained.
The models were verified always considering the relationship
between the integrated parts and their possible positive or
negative interactions. Even with the integrated plant model
the framework could also successfully decrease the
verification duration by applying the proposed strategies –
before the application of the strategies only the two smallest
models could be verified, state space generation would not
finish for weeks for the other models – and thus even the
biggest model – the complete SIS model – could be
successfully verified in around four hours. Thereby the
framework proved applicable to the development of real
scenario SIS control systems according to the safety standards.

REFERENCES

[1] M. Bani Younis and G. Frey, "Formalization of Existing PLC
Programs: A survey," Kaiserslautern, 2003.

[2] C. Yamada, Y. Nakaga and M. Nakahodo, "An Efficient Model
Checking Using Check-Points Extraction Method," International
Journal of Computers, vol. 1, no. 3, pp. 95-101, 2007.

[3] M. Mazzolini, A. Brusaferri and E. Carpanzano, "An Integrated
Framework for Model-based Design and Verification of discrete
Automation Solutions," in Proceedings 2011 9th IEEE International
Conference on Industrial Informatics, Milan, 2011.

[4] M. Sallak, C. Simon and J.-F. Aubry, "A Fuzzy Probabilistic
Approach for Determining Safety Integrity Level," IEEE Transactions
on Fuzzy Systems, vol. 16, no. 1, pp. 239-248, 2008.

[5] R. Squillante Júnior, D. J. Santos Filho, F. Junqueira and P. E. Miyagi,
"Development of Control Systems for Safety Instrumented Systems,"
IEEE Latin America Transactions, vol. 9, no. 4, pp. 451-457, Julho
2011.

[6] J. Börcsök and P. Holub, "Consideration of common cause failures in
safety systems," in ACACOS'08 Proceedings of the 7th WSEAS
International Conference on Applied Computer and Applied
Computational Science, Hangzhou, 2008.

[7] G. Florea and R. Dobrescu, "Risk and Hazard Control the new process
control paradigm," in Communications, Circuits and Educational
Technologies - Proceedings of the 2014 International Conference on
Electronics and , Prague, 2014.

[8] IEC, "IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-related systems,"
International Electrotechnical Commission, Geneva, 2010.

[9] IEC, "IEC 61511 - Safety instrumented systems for the process
industry sector," International Electrotechnical Commission, Geneva,
2003.

[10] M. Diaz, Petri Nets - Fundamental Models, Verification and
Applications, London: John Wiley & Sons, 2009.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 290

[11] M. M. Patil, S. Subbaraman and S. Joshi, "Exploring Integrated
Circuit Verification Methodology for Verification and Validation of
PLC Systems," in International Symposium on Electronic System
Design, Kochi, 2011.

[12] H. Wan, X. Song, G. Chen and M. Gu, "A Refinement-Based
Validation Method for Programmable Logic Controllers," in 10th
International Conference on Quality Software, Zhangjiajie, 2010.

[13] A. Mayr, R. Plösch and M. Saft, "Towards an Operational Safety
Standard for Software - Modelling IEC 61508 Part 3," in 18th IEEE
International Conference and Workshops on Engineering of
Computer-Based Systems, Las Vegas, 2011.

[14] S. Richter, M. Wahler and A. Kumar, "A framework for component-
based real-time control applications," in 13th Real-Time Linux
Workshop, Prague, 2011.

[15] H. A. Gabbar, "Integrated framework for safety control design of
nuclear power plants," Nuclear Engineering and Design, vol. 240, no.
10, p. 3550–3558, 2010.

[16] C. A. Sarmento, J. R. Silva, P. E. Miyagi and D. J. Santos Filho,
"Modeling of Programs and its Verification for Programmable Logic
Controllers," in Proceedings of the 17th World Congress , Seoul,
2008.

[17] G. Canet, S. Couffin, J.-J. Lesage, A. Petit and P. Schnoebelen,
"Towards the automatic verification of PLC programs written in
Instruction List," in IEEE International Conference on Systems, Man,
and Cybernetics, Nashville, 2000.

[18] A. Bouali and B. Dion, "Formal Verification for Model-Based
Development," in SAE Technical Paper 2005-01-0781, Newswire,
2005.

[19] E. I. Gergely, L. Coroiu and A. Gacsadi, "Design of Safe PLC
Programs by Using Petri Nets and Formal Methods," in Proceedings
of the 11th WSEAS international conference on Automation &
information, Romania, 2010.

[20] R. Zurawski and M. Zhou , "Petri nets and industrial applications: a
tutorial," IEEE Transactions on Industrial Electronics, vol. 41, no. 6,
p. 567–583, 1994.

[21] P. M. G. del Foyo and J. R. Silva, "Towards a unified view of Petri
nets and object oriented modeling," in In 17th International Congress
in Mechanical Engineering, São Paulo, 2003.

[22] P. M. G. del Foyo, A. S. P. J. Miralles and J. R. Silva, "UM
VERIFICADOR FORMAL EFICIENTE PARA SISTEMAS DE
TEMPO REAL," in X SBAI – Simpósio Brasileiro de Automação
Inteligente, São João del-Rei, 2011.

[23] E. M. Clarke, O. Grumberg and D. A. Peled, Model Cheking, 1st ed.,
Cambridge: MIT Press, 1999.

[24] B. Berthomieu and M. Menasche, "An Enumerative Approach For
Analyzing Time Petri Nets," in Proceedings IFIP, Paris, 1983.

[25] R. Alur, C. A. Courcoubetis and D. L. Dill, "Model-checking for real-
time systems," in Proceedings of the Fifth Annual IEEE Symposium
on Logic in Computer Science, Philadelphia, 1990.

[26] ISO/IEC, "Software and Systems Engineering - High-level Petri Nets,
Part 2: Transfer Format, International Standard WD ISO/IEC 15909.
Wd version 0.9.0," 2005.

[27] M. Bonfe and C. Fantuzzi, "Object-oriented approach to PLC software
design for a manufacture machinery using IEC 61131-3 norm
languages," in Proceedings of IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, Como, 2001.

[28] G. Di Orio, J. Barata, C. Sousa and L. Flores, "Control System
Software Design Methodology for Automotive Industry," in IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
Manchester, 2013.

[29] M. Ko, S. C. Park, J.-J. C. Chang and M. Chang, "New modelling
formalism for control programs of flexible manufacturing systems,"
International Journal of Production Research, vol. 51, no. 6, pp.
1668-1679, March 2013.

[30] T. Murata, "Petri nets: Properties, analysis and applications,"

Proceedings of IEEE, vol. 77, no. 4, p. 541–580, 1989.

[31] A. Cavalheiro, D. Santos Filho, A. Andrade, J. R. Cardoso, E. Bock, J.
Fonseca and P. E. Miyagi, "Design of Supervisory Control System for
Ventricular Assist Device," in Second IFIP WG 5.5/SOCOLNET
Doctoral Conference on Computing, Electrical and Industrial
Systems, Caparica, 2011.

[32] M. B. Dwyer, G. S. Avrunin and J. C. Corbett, "Property Specification
Patterns for Finite-state Verication," in Proceedings of 2nd Workshop
on Formal Methods in Software Practice, Clearwater Beach, 1998.

[33] IEC, "IEC 61131-3 - Programmable controllers - Part 3: Programming
languages," Geneva, 2003.

[34] D. J. Santos Filho, "Aspectos do Projeto de Sistemas Produtivos,"
Tese de Livre Docência, Escola Politécnica da Universidade de São
Paulo, São Paulo, 2000.

[35] F. Gu, W. Harrison, D. Tilbury and C. Yuan, "Hardware-In-The-Loop
for Manufacturing Automation Control: Current Status and Identified
Needs," in CASE 2007. IEEE International Conference on Automation
Science and Engineering, Scottsdale, 2007.

[36] ISA, "ANSI/ISA-S5.1 — Instrumentation Symbols and
Identification," Research Triangle Park, 1984 (R1992).

[37] J. A. L. Souza, D. J. Santos Filho, P. E. Miyagi, R. Squillante Junior
and R. C. Ferrarezi, "Critical Systems: a New Approach in Mitigation
Control Layer," in IFAC2014, Cape Town, 2014.

[38] M. Modarres, M. Kaminskiy and V. Krivtsov, Reliability Engineering
and Risk Analysis: A Practical Guide, 2 ed., New York: CRC Press,
2009.

[39] Center for Chemical Process Safety, Guidelines for Hazard Evaluation
Procedures, 3 ed., New York: Wiley-AIChE, 2008.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 291

