
  
Abstract— As productive systems are becoming more complex, 

their control solutions are also increasingly becoming more complex.  
The processes of understanding and developing such systems have 
also become highly complex. Thus design flaws are intrinsic to their 
development.  Even the most innovative systems are error prone and 
faults or accidents may cause severe damage to the operators, the 
plant or the environment, as no system has no fault risk. The concepts 
of Safety Instrumented Systems (SIS) might be a solution to this 
problem. However, critical systems – such as oil and gas refineries 
where faults may cause severe accidents – controlled by PLCs also 
demand a formal verification processes of their control programs and 
must be developed according to the safety control program 
development cycle defined on the IEC 61511 standard. On this work 
we propose a framework for the model based development of SIS 
control programs that is based on the cycle defined on the IEC 61511 
standard and where the interaction between the prevention and 
mitigation programs is considered.  The framework was applied to 
the development of the SIS control program of a natural gas 
compression plant (ECOMP).  The framework allowed the resulting 
program to present a modular structure and to have several properties 
properly verified – considering that the final model represented the 
entire SIS program of a real world plant. 

 
Keywords— framework, IEC 61511, prevention and mitigation 

SIS, Model Checking, GHENeSys.  

I. INTRODUCTION 
A 
s per society demand, increasingly complex control systems 

are being developed for a great variety of applications, ranging 
from productive to service systems [1] [2]. Together with the 
physical complexity of these control systems, their control 
programs also became more complex, not only because some 
tasks, which were performed by hardware, are now performed 
by software, but also because software allows the 
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implementation of much more complex tasks [3]. 
Even the most innovative systems are error prone and faults 

or accidents may cause severe damage to the operators, the 
plant or the environment. Although fault detection and 
treatment is subject of several studies, faults still happen as (i) 
no physical component or device has no fault risk, (ii) human 
operators does not have no risk, (iii) no tool can predict or 
model all states reachable by a system [4],  [5], [6].  The 
concepts of Safety Instrumented Systems (SIS) might be a 
solution to these problems. Risk reduction layers based on 
hierarchical control solutions can manage risks through 
prevention and mitigation layers designed to lead the system 
to a safe state in case of faults [7].  On this context, safety 
standards as the IEC 61508 [8] and IEC 61511 [9], provide 
guidelines for the SIS life cycle, ranging from development to 
decommissioning.  

The processes of understanding, specifying and developing 
such complex and critical systems has become a highly 
complex task, thus design flaws are intrinsic to their 
development [10], [3].  Critical processes controlled by PLCs 
– such as oil and gas refineries, where faults may cause severe 
accidents – requires great reliability from their control 
programs and thus, they not only need to be subject of formal 
verification processes [11], [12], but also have to be developed 
according to the safety control program development cycle 
defined on the IEC 61511 standard [13].   

We found distinct approaches to deal with these problems 
on the literature. Approaches as presented in [14] and [15] 
propose frameworks for safety control software development 
as well as the control software architecture, however they do 
not include formal verification phases or were proposed 
according to the IEC 61511 standard.  It is worth mentioning 
that the framework proposed in [15] presents modularity 
concepts and is one of the few that distinguish between 
prevention and mitigation control programs.  Approaches as 
the ones presented in [16] and [17] only focus on proposing 
methodologies for the formal verification of exiting control 
programs. In [18] is presented a proprietary approach for the 
model based development of safety control programs 
according to the IEC 61508 standard, no details are given on 
how each phase of the cycle is implemented. In general terms, 
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the safety control software is modelled as blocks diagrams and 
state machines and automatically translated to control code.  
The control code is then verified through observers, where 
only if a given input produces the expected output is verified.  
In [19] a process is presented for the model based 
development of control programs and their formal verification 
from their informal specifications.  It is also discussed the 
necessity of including the plant behavior model on the control 
model for proper verification.  However this approach was not 
proposed for safety programs and does not present solutions to 
minimize the state space explosion problem. 

On this work we propose a framework for the development 
of SIS control programs.  The proposed framework: First, will 
be based on the phases of the safety control program 
development cycle of the IEC 61508 and IEC 61511 
standards. Second, will take into consideration and analyze the 
relationships between the prevention and mitigation layers. 
Third, will be based on the Model Based Design (MbD) [3] 
approach.  Considering the approaches on the literature, with 
this work it is expected to put together the best practices for 
the development of safety control programs based on the cycle 
of the IEC 61508 and IEC 61511 standards, as well as to deal 
and propose solutions for the shortcomings arriving in a 
framework that can be used for control engineers to develop 
solutions for real world problems. 

This work is organized as follows: Section II will present a 
short review of the main concepts used in this work. Section 
III will present a description of the proposed framework.  
Section IV will present an application of the framework to a 
real case scenario.  Section V will present the results and 
conclusions.  

II. MATERIALS AND METHODS 

A. The GHENeSys environment 
SIS control systems can be viewed as an event driven 

system, presenting functional characteristics as asynchronism, 
reset possibility, parallelism, concurrence, etc. Thus they can 
be classified as discrete event systems (DES) and modelled by 
Petri Nets, [5], [20] and its extensions. 

The GHENeSys environment is being developed with the 
goal of representing, in a unified way, classical Petri Nets, its 
extensions defined on the ISO/IEC 15909 standard, and High 
Level Petri Nets [21]. The GHENeSys environment is 
composed of the following basic modules:  The GHENeSys 
nets and the Editor tool, the simulation module and the 
verification tool [22]. 

The GHENeSys environment implements several concepts 
to aid the modeling process, such as: Pseudoboxes that allow 
easier modelling of the exchange of information between 
different parts of the system; Hierarchy that allows the 
encapsulation of subnets without losing any properties through 
the use of macro elements; The representation of non-
deterministic time periods, where lower and higher bound time 
intervals can be set for transitions and places. 

The GHENeSys net is the tuple , 
where: 

  is the set of places, which can be boxes 
or pseudoboxes; 

  are the activities, or active elements; 
  is the flux 

relation; 
  is the capacity function; 
  is the function that identify the 

macro elements or the hierarchy; 
  is the set of 

initial marks; 
  is the function that 

maps the dense time intervals for each element.  
The set of markings is the pair  with , defining 

the place each token can be found and  defining for how 
long this token will remain in the place.  The time 
measurement is globally synced and updated after each 
transition. 

The GHENeSys verification tool performs the formal 
verification of real time concurrent systems modelled by 
GHENeSys net through Model Checking [23] techniques. The 
state space is constructed using the enumerative approach 
based on state classes [24] concept. The tool has options to 
build SCG, SSCG and CSCG state graph types.  Checked 
properties are specified through TCTL [25]. 

The GHENeSys environment will be used on this work due 
to several reasons: (i) Due to the characteristics of the SIS, the 
amount of checked properties may be very large, so it is 
desirable that the state space is generated through the 
enumerative approach once instead of being generated on-the-
fly several times.  The state space generation is done in 
exponential space and time, and the verification of a property 
is performed in polynomial time, if the state space is already 
constructed.  (ii) The use of the dense time approach, as 
several SIS properties are time dependent. (iii) PNML [26] is 
the default transfer format.  This allows the interchange of 
information between all GHENeSys tools, as well as with 
external tools that support the standardized format.  (iv) All 
modeling and verification tasks are performed with no need of 
external modules or tools. (v) The state space generation and 
the specification of the tested properties are performed by the 
same tool. 

III. PROPOSED FRAMEWORK 
The proposed framework will be presented according to the 

“V-model” from the IEC 61511 standard [9].  The main 
components of the framework and their relations with the 
phases of the “V-model” are displayed on Fig. 1.  Each 
framework component was proposed to comply with one or 
more phases of the safety program development cycle.  

The first phase of the development cycle is related with 
each SIS subsystem requirement elicitation. This phase is out 
of the scope of the framework and must be addressed by the 
SIS control program development methodologies, which will 
be discussed later.  

The methods, techniques and tools that will be used during 
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the control program development must be chosen on the first 
part of the second phase.  As already discussed on previous 
sections, the GHENeSys environment was chosen for the 
modelling and formal verification of SIS control programs. 

 
Fig. 1 - Framework + "V-model" 

The control program development on the framework will be 
performed according to the Model Based Design (MbD) 
approach [3]. Although this approach is not referred in the IEC 
61511 standard, as according to it, all control programs shall 
be developed in an implementation language. The standard 
requires that a final validation must be performed by the end 
of the development cycle, and modeling is one of the 
recommended tools for this validation.  Thus by adopting the 
MbD, the framework will be not only complying with the 
standard but also improving the modularity of the SIS control 
programs.  

A. Control program architecture modelling methodology 
Besides the modeling tools, a modeling methodology also 

must be chosen or proposed. This methodology must comply 
with the modularity requirements of the IEC 61511 standard 
and allow a high-level view of the modeled system together 
with the necessary refinements.  

There are several methodologies on the literature for the 
modelling and development of control programs as in [27], 
[28] and [29] among others. However these methodologies 
were developed for productive / manufacture systems and are 
not suitable for SIS development.  As opposed to a usual 
productive system, a SIS is designed to oversee a system and 
to react on events received at any point of the control code 
execution, degenerating the system to a safe state. Also, 
control programs for productive systems usually present a 
“linear” structure, that is, the system receives some input – or 
raw material –, this material is then processed or transformed 
resulting on an output – or product – by the end of the 
program execution.  SIS control programs are not designed to 
produce outputs in this sense, but to decide which control 
actions are necessary based on the current state of the 
overseen system.  As a productive system process goods, a 
SIS process information. 

Based on the discussed distinctions between a productive 
system and SIS we are proposing a methodology for SIS 

control program architecture modelling in GHENeSys nets: 
i. Main activity definition:  The highest level activity is 

defined. 
ii. Definition of the independent macro processes:  On 

this step the main SIS processes must be defined.  
A SIS might be composed of processes of fault 
prevention and mitigation for example.  Also a 
coordination process might be proposed to 
coordinate other processes. 

iii. Sub-processes or functionalities definition:  The 
processes must be refined on the necessary 
functionalities. For instance, a process of fault 
prevention might need at least the fault detection 
and actuation functionalities. 

iv. Basic operations definition: The functionalities are 
further refined in the necessary basic operations.  
For instance, detection functionality might require 
Boolean logic operations for fault detection, filters 
for spurious readings from the sensors, among 
others.  Basic operations can be shared between 
functionalities. 

v. Basic operation refinement:  All operations must be 
refined according to the rules for Petri Net 
reduction or refinement presented in [30] in order 
to execute the logic they were designed to.  A 
GHENeSys net box must be defined as the holder 
of the binary result of the modelled logic. 

vi. External signals representation: All necessary external 
signals for the execution of each operation must be 
represented. External signals can be sensors, 
actuators or even other operation output signals. 

By using the presented methodology we expect to generate 
the maximum possible amount of generic operations, being the 
control program designer responsible to choose the operations 
necessary for the developed system.  New functionalities can 
also be developed if needed. 

B. Control program architecture 
The second, and final, part of the second phase of the 

development cycle regards the control program architecture.  
The architecture is developed according to the methodology 
introduced on the last section. 

i. Main activity definition:  The main, and highest level, 
activity is the whole SIS control program. 

ii. Definition of the independent macro processes:  After 
refining the SIS activity we have the prevention 
and mitigation macro processes.  

iii. Sub-processes or functionalities definition: Both 
prevention and mitigation activities need at least 
the fault detection and fault treatment 
functionalities. 

iv. Basic operations definition: On this step we hope to 
refine the most common basic operations needed 
for SIS development found in several related 
works as [5] e [31]. 

v. The detection functionality is refined in four 
operations.  The spurious event filter operation 
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avoids spurious readings from poorly calibrated 
sensors, for instance, thus avoiding unwanted SIS 
activation and system degeneration. The Boolean 
logic “AND” and “OR” operations can be used to 
implement logics for faults detection between 
several sensors. The voting logic operation is using 
to implement voting logics – like 2oo3 (two out of 
three, 1oo3 (one out of three) and so on. As these 
logics are very common in SIS development they 
will be implemented as a full operation even 
though they can be implemented through Boolean 
operations. 

vi. The treatment functionality is also refined in four 
operations. The Boolean logic operations are the 
same of detection.  The sequencing operation 
provides sequencing for actuator signals.  The 
actuation operation sends signals for the actuators 
and receives signals from detection operations and 
command devices – if used. 

vii. Basic operation refinement: The operations described 
on the last item are now further refined in order to 
obtain the structures that can implement the 
proposed logic in GHENeSys nets.  The 
refinements of a 2oo3 voting operation are shown 
on Fig. 2. The “Voting-ON” box stores the 
information if the voting operation is true or not 
based on the signal from the sensors.  The 
refinements were done for all other operations. 

viii. External signals representation:  Now the sensors 
signals can be represented on the operations 
structures to enable the desired logics.  The 
complete 2oo3 voting logic is shown on Fig. 3. 
This operation receives three input signals – 
represented as the pseudo-boxes “ps-Sensor-
A/B/C” – that, if active in pairs, make the “Voting-
ON” box receive one mark. The box loses its mark 
if any pair is no longer active.  Input signals can 
come either from sensors or any other detection 
operation. 

C. Control program development 
The third and fourth phases of the development cycle are 

related to the development of the control program. The 
framework allows the user to choose the methodologies for the 
development of the prevention and mitigation functionalities. 
These methodologies must be based on formal models and be 
in accordance with the IEC 61508 and IEC 61511 standards.  
The methodologies must supply the necessary information to 
build the control programs from the basic framework 
operations. 

1) Prevention Macro Process Development Methodology 
The prevention macro process development methodology is 

responsible to identify and select the faults that will be treated 
by the SIS. Faults can be identified through HAZOP reports, 
cause-effect matrix or other applicable technique.  The 
methodology must then apply the techniques to discover the 
causal relations leading to each selected fault, that is, how – by 

which sensors – each fault can be detected. 

 
Fig. 2 - Voting operation structural refinement 

 
Besides proposing how each fault can be detected, the 

methodology must also propose actions to treat each fault.  
The treatment is usually performed by the actuation of one or 
more components – as control valves – and/or the shutdown of 
an endangered plant equipment. The command signals, if any, 
must be defined and the preset times used on the spurious 
event filter block must be informed in case this block is 
implemented. All collected fault information constitutes a SIF. 

From SIF information, the necessary basic operations to 
model the prevention macro process can be selected.  
Operations have their input and output signals connected until 
the control program model is constructed.  

 
Fig. 3 - 2oo3 Voting operation 

2) Mitigation Macro Process Development Methodology 
Now, a mitigation macro process development methodology 

must be chosen, either the same methodology used for 
prevention or a new methodology can be chosen.  As opposite 
to the prevention activity, the mitigation activity does not need 
to select the faults that will be treated by the mitigation SIS. 
The mitigation SIS will treat faults on the prevention SIS 
execution, that is, the mitigation SIS will mitigate the effects 
of the prevention SIS not being able to lead the plant or 
process to a safe state. 

The mitigation methodology, as the prevention 
methodology, supplies the necessary information to constitute 
the SIF, that is, how each effect can be detected and treated.  
Necessary command signals and preset times must also be 
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provided by the methodology. From SIF information the 
necessary basic operations to model the mitigation macro 
process are selected.  Operations have their input and output 
signals connected until the control program model is 
constructed. 

D. Verification Process 
The sixth and seventh phases of the development cycle are 

related to the formal verification of the models. Due to the 
Model based Design approach, the formal verification is 
performed on the control program models, not on the control 
code. The fifth phase of the development cycle (control code 
generation) will be performed on the models after the 
verification processes. All properties described initially in 
natural language shall be translated to TCTL according to the 
patterns presented in [32]. Models are integrated according to 
methodology described below. The verification will be 
performed in three different contexts which are detailed 
afterwards.   

1) Integration of the models 
The verified models must be integrated after each 

verification context.  First, the prevention and mitigation 
models are integrated resulting on the complete treatment 
model of a single fault. The treatment of several faults is then 
integrated, resulting on the complete SIS model.  The 
integration is performed according to the steps below: 

i. Shared sensors and actuators between models are listed. 
ii. Shared sensors signals are duplicated.  Each model keeps 

its basic operations, like spurious events filters, 
voting, etc. Only the sensor signal is duplicated. 

iii. The activation of sets of shared actuators is implemented 
through “OR” logic operations between the 
pertinent actuation operations.  Sequencing between 
actuators must be respected and implemented 
through sequencing operations. 

2) Models context 
The first verification is performed in each prevention and 

mitigation model.  This first context verifies if the models are 
capable of identifying and treating the fault they were 
designed to identify. The verified properties can be extracted 
from each SIF description. The reachability of undesired states 
must also be verified, that is, the reachability of states that 
might endanger the protected system or process must be 
verified. Natural language properties are translated to TCTL 
propositions and inputted on the GHENeSys verification tool. 

3) Fault treatment context  
The verified and corrected, if necessary, prevention and 

mitigation models are now integrated and their relationship is 
evaluated.  The second context verifies if the integrated 
models can properly work together, that is, if the prevention 
model can jeopardize the mitigation model and vice-versa.  
Verified properties can be proposed from the analysis of the 
integrated GHENeSys model structure.  

4) SIS context 
The last verification step is performed on the complete SIS 

model, where the treatment of several faults is integrated. As 
the on the fault treatment context, the SIS context verifies if 
the integrated models can properly work together, that is, if 
the treatment of one fault can jeopardize the treatment of 
others faults. From the analysis of the integrated GHENeSys 
model structure the verified properties can be proposed.  
Desirable events such as, shared actuators being activated by 
all pertinent models and sequencing operations, must be 
verified.  Undesirable events, such as one model being able to 
activate actuators that are not part of treatment of the fault, 
must also be verified. 

5) Strategies to deal with the state space problem 
The basic architecture of a discrete event system (DES) is 

composed of command and sensoring devices that send 
environmental information to the control module.  The control 
module processes the information according to its control 
software logics and sends information to the output devices, 
such as monitoring and actuation devices. As a SIS can be 
classified as a DES, they share the same architecture. 

However, although sharing the same basic architecture, they 
have distinct verification contexts.  The verification of the 
control software for SED – such as manufacture systems – is 
aimed in checking if the control software fulfills its design 
requirements, that is, if the software has the desired behavior 
based on a fixed set of inputs (or initial states).  The 
verification of SIS control software is aimed not only on 
verifying if the software fulfills a set of requirements, but also 
if the system does not reach undesirable states that might be 
dangerous.  Thus the model of the plant must be attached to 
the SIS control program model to generate all possible sets of 
inputs. 

As modelling the behavior of a plant is out of the scope of 
this work, a very simple model for the plant was chosen, on 
this model every input device is modelled with two states – 
GHENeSys boxes –, one is marked when the signal is active, 
and the other is marked when the signal is inactive.  Although 
this model does not represent precisely the behavior of the 
plant, it can generate all possible sets of inputs. 

The main downside of this approach is the explosion of the 
state space, thus we proposed some strategies to deal with this 
problem and shorten verification duration. 

i. Actuators models suppression 
On SIS, usually a single actuation signal activates several 

actuators, so the nets representing the actuators behavior can 
be suppressed, as only the actuation signal needs to be part of 
the verification.  Thus, the size of the state space can be 
reduced without losing any important information regarding 
the behavior of the system. 

ii. Segregation of the models 
Another strategy to reduce the state space explosion 

problem is the segregation of the models.  This segregation 
can be performed on mitigation models, as the mitigation 
model of one fault is composed of the treatment of several 
effects. A usual mitigation model constructed according to this 
framework has the structure shown on Fig. 4.  On the figure, 
the effect “A” is detected by the sensors “A”, the signal of the 
sensors is sent to the detection logic “A” and the logic 
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activates the actuation operation “A”.  This operation finally 
activates the actuators “A/B/C”, which are shared among all 
effects.  The same happens for the effect “B”, except that the 
actuators “A/B/C” and “B/C” are activated.  The effect “C” 
activates the actuators “A/B/C”, “B/C” and “C”. 

 
Fig. 4 - Mitigation program structure 

We propose to perform on this type of model four distinct 
verifications.  On the first three verifications (Verification 1, 2 
and 3) the model of each effect treatment is verified alone, 
with other models disabled.  These first three verifications are 
intended to verify if the treatment of each effect has been 
properly implemented.  The last verification (Verification 4) is 
intended to verify the interactions between the actuation of all 
effects.  That is, if each effect treatment model can only 
activate its actuators or if some effect can jeopardize the 
treatment of another. By verifying only the actuation relations, 
the model does not need the detection blocks anymore – as 
each model was already verified individually – leading to 
smaller models and thus shorter verification durations. 

iii. Segregation of the context 
As the models are integrated for the verification of the next 

context they inevitably get increasingly bigger.  However, the 
integrated models were already verified on the previous 
context, so only their actuation interactions need to be 
verified.  Much like the “Verification 4” of the previous item, 
the sensors and detection logic models can be removed from 
the models, just by allowing the actuation operation to 
generate random signals all possible combinations are inputed 
on the actuation logic and their relation can be verified. 

E. Control program codding 
With the SIS control program properly verified it is possible 

to start the fifth phase of the development cycle that is related 
to the control program codding. 

One of the advantages of using the model based approach is 
the possibility of automatically transforming the models into a 
language allowed by the IEC 61131-3 [33] standard.  To 
perform this isomorphic transformation we propose to use the 

method described in [34].  This systematic generates modular 
LD diagrams, where it is possible to recognize blocks 
resulting from the transformation of transitions, places or 
outputs.  The systematic is composed of the following steps: 

i. Assign LD internal variables to transitions. 
ii. Assign LD internal variables to places. 

iii. Internal LD events must be associated with output 
signals as monitoring and actuation. 

iv. External LD events must be associated with input 
signals as command and sensoring. 

v. For each transition generate the corresponding LD 
a. One rung for each transition 
b. Each rung must contain AND operations 

between the transition preconditions and 
restriction conditions (external events) 

c. In case of timed transitions, TON elements 
must be added before the relay that 
represents a transition on its rung. 

vi. For each local state change generate the corresponding 
LD 

a. First the initial marking is generated. 
b. The marking of each place is updated by 

set/reset relays 
vii. Generate the LD for the external events 

a. Output activation LD 
Normal relays without memory must be used as the local 

states remain active until some state transition happens. 

F. Control program tests 
The eighth phase of the development cycle is the integrated 

test of the control program and the control hardware.  On this 
framework, the control program, now translated to an IEC 
61131-3 standard language, is uploaded to the safety PLC and 
submitted to exhaustive plant simulation tests.  These tests 
may be performed through HIL [35] techniques.  This phase 
shall be further developed on future works. 

IV. FRAMEWORK APPLICATION 
The proposed framework was applied to the development of 

the SIS control program for a natural gas compression plant 
(ECOMP).  As this type of plant works with highly flammable 
fluids, the process risk is too high, demanding the 
implementation of SIS. 

A. Process description 
The ECOMP plant is connected to the main gas pipeline 

through the suction pipeline.  The incoming gas is filtered on 
two coalescent filters then distributed between four turbo 
compressors.  The compressed gas then returns to the main gas 
pipeline through the discharge lines.  There are temperature 
sensors, fire and gas detectors on each turbo compressor 
discharge lines as well as pressure sensors on the main 
discharge line.  Several ON-OFF valves are installed on the 
suction lines, between the filters, on the turbo compressors, 
and on the discharge lines.  Also there are ON-OFF valves for 
the emergency discharge lines, and on the CO2 tanks 
connected with the suction of each turbo compressor. All 
equipment TAGs used are according to the SA-S5.1-1984 [36] 
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standard.  

B. Development of the control program 
Now that the process is described, the methodologies for the 

development of the prevention and mitigation functionalities 
must be chosen.  

1) Development of the prevention macro process 
The prevention macro process will be developed according 

to the methodology proposed in [5]. Briefly, the faults that 
will be treated by the prevention SIS are extracted from the 
HAZOP report.  The detection models are generated from 
cause-effect matrixes, and then those matrixes are converted 
into Bayesian Networks, which are finally converted into Petri 
Nets.  The treatment models, that is, the actuators used on the 
treatment of each fault, are generated from the HAZOP report. 

Applying the methodology for the ECOMP results in a table 
where it is possible to find the faults that will be treated, their 
SIF number, the initializing events – the sensors that are 
capable of detecting such fault – and the prevention actions, 
that is, which valves need to be closed and/or which 
equipment must be shut-down, and so on. The logic relations 
between the sensors and command signals can be found on the 
generated Petri. 

The first fault is “High pressure on the discharge lines”. 
This fault can be detected by the sensors 

 connected by a 2oo3 
voting logic.  The treatment is performed by closing six ON-
OFF valves and by shutting-down all four turbo compressors. 
The second fault is “High temperature on the turbo 
compressors discharge”. This fault can be detected by the 
sensors connected by the 
logic

. 
The treatment is performed by shutting-down all four turbo 
compressors. Also, a command signal resetting the models 
was implemented. 

Finally, both models will need the spurious event filter and 
the actuation operations.  The first fault treatment model will 
need the 2oo3 voting operation, and the second fault treatment 
model will need the “OR” logic operation.  With the necessary 
blocks, the high level GHENeSys model is assembled and 
refined until the full model is obtained.  Unfortunately the 
models are too big to be presented on the paper. 

2) Development of the mitigation macro process 
The mitigation macro process will be developed according 

to the methodology proposed in [37]. The mitigation treatment 
is focused on the mitigation of the effects of the prevention 
SIS failing to lead the plant to a safe state. The detection 
models are generated from how to detect each effect described 
on the FMEA [38] report.  Relations between sensors are 
described on the FTA [38] report.  Treatment models are 
constructed from What-if techniques [39]. 

The application methodology on the ECOMP results on 
What-if, FMEA and FTA reports.  From these reports it is 
possible to obtain the sensors and actuators related with each 
effect, as well as their logical relations. As example, fire may 
be one of the effects of the first prevention fault not being 

properly treated; as if the temperature is not lowered the 
pressurized gas can leak and ignite.  This effect can be 
detected by the sensors 

. The 
treatment is performed by first, performing the actions from 
the prevention SIS, second, opening the emergency discharge 
line, third, closing the filters outlet vales and, after all these 
actions are performed, finally opening the valves from the 
CO2 tanks. 

Finally, the example effect will need the spurious event 
filter and “OR” logic operations for the detection 
functionality. “AND” and “OR” logic, sequencing and the 
actuation operations for the actuation functionality.  Logic 
operations are necessary in the actuation blocks as some 
actuators are shared among treatment models and there are 
sequencings that must be respected. With the necessary 
blocks, the high level GHENeSys model is assembled and 
refined until the full model is obtained. 

C. Models verification 
The strategies for the reduction of the state space problem 

were applied to all models, integrated or not. The amount of 
checked properties and the verification duration for each 
model can be observed on the Table I. 

Table I - Verifications 

Model # of 
properties 

# of State 
classes 

Time 
elapsed 

Fault 1 Prevention 3 2785 24s 
Fault 4 Prevention 3 13566 9m 30s 
Fault 1 Mitigation - 

Effect 1 3 5061 3m 11s 

Fault 1 Mitigation - 
Effect 2 3 24827 1h 1m 24s 

Fault 1 Mitigation - 
Effect 3 3 38648 2h 28m 16s 

Fault 1 Mitigation - 
Interaction 2 178 1s 

Fault 4 Mitigation - 
Effect 1 3 24827 1h 14m 18s 

Fault 4 Mitigation - 
Effect 3 3 38648 2h 10m 6s 

Fault 4 Mitigation - 
Interaction 2 66 1s 

Fault 1 integrated 4 2148 15s 
Fault 4 integrated 4 885 3s 

Complete SIS 4 109963 4h 17m 33s 
 
All verifications were performed on an Intel Core i7 3770 

(@3.4 GHz), 16GB DDR3 SDRAM, 1 TB HDD machine 
running Windows 7 SP1 with Java Version 7 Update 67. Some 
examples of checked properties are given on Table II, together 
with their respective TCTL propositions.  All formulas were 
checked with satisfactory results. 

Where “P” stands for prevention, “M” for mitigation, “E1”, 
“E2”, “E3” stand for each effect treated by mitigation, and 
“ENABLE_EXT” stands for the command signal.  “PSHH-
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006A/B/C” is the signals from the pressure sensors. 
TABLE II. CHECKED PROPERTIES 

Models level – Fault 1 prevention 
Actuators remain activated and the compressors remain off 
until the fault is not detected anymore by the sensors for 10 
sec. and the command signal is active. 

  
SIS level – Integrated 

Common actuators are activated by all models. 

  
The activation of any prevention model never triggers any 
actuators exclusively related with the mitigation models. 

  

V. CONCLUSION 
On this work we presented a framework for the model 

based development of SIS control programs according to the 
phases provided by the safety software development cycle 
from the IEC 61508 and 61511 safety standards.  The 
GHENeSys environment was chosen as the main tool to aid 
the development; this choice was also justified as per safety 
standard requirement.  The modular development of the 
control software was allowed by the proposed methodology 
for the architecture development.  This methodology not only 
was used to propose the control program architecture 
considering the most common SIS software components, but 
also can be used by the control engineers to develop others 
architectures fitting their specific needs and still respecting the 
safety standards.  

After the control program architecture was proposed, the 
development of the control program was discussed.  
Guidelines for the choice of the methodologies for the 
development of the prevention and mitigation functionalities 
were discussed, where these methodologies must supply the 
information needed to assemble the modular operations that 
will result on the final control program model. 

The verification processes were broken into contexts and 

guidelines to propose the checked properties in each context 
were supplied.  The modular approach allowed the easy 
integration of the simpler models until the complete SIS model 
is obtained.  After extensive modeling and testing, some 
strategies to deal with the state space explosion problem were 
proposed.  Also, a methodology for the isomorphic 
transformation of the SIS control program model to control 
code was discussed. 

Finally, the framework was applied to the development of a 
SIS control program for a real gas compression plant.  The 
framework was able to deal with all the specific needs of the 
project, the generated models presented modular architecture 
and, thanks to that, can be easily understood and maintained.  
The models were verified always considering the relationship 
between the integrated parts and their possible positive or 
negative interactions.  Even with the integrated plant model 
the framework could also successfully decrease the 
verification duration by applying the proposed strategies – 
before the application of the strategies only the two smallest 
models could be verified, state space generation would not 
finish for weeks for the other models – and thus even the 
biggest model – the complete SIS model – could be 
successfully verified in around four hours.  Thereby the 
framework proved applicable to the development of real 
scenario SIS control systems according to the safety standards. 
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